Role of p42/p44 mitogen-activated-protein kinase and p21waf1/cip1 in the regulation of vascular smooth muscle cell proliferation by nitric oxide.
نویسندگان
چکیده
The purpose of this study was to determine the involvement of the p42/p44 mitogen-activated protein kinase (MAPK) pathway and induction of p21(waf1/cip1) in the antiproliferative effects of nitric oxide (NO) on rat aortic smooth muscle cells (RASMC). NO, like alpha-difluoromethylornithine (DFMO), interferes with cell proliferation by inhibiting ornithine decarboxylase (ODC) and, therefore, polyamine synthesis. S-nitroso-N-acetylpenicillamine or (Z)-1-[N-(2-aminoethyl)-N-(2-aminoethyl)-amino]-diazen-1-ium-1,2-diolate inhibited RASMC growth at concentrations as low as 3 microM, and DFMO elicited effects at concentrations of 100 microM or greater. The cytostatic effect of NO and DFMO was prevented by the MAPK kinase 1/2 inhibitors PD 098,059 or U0126. This finding suggests that the p42/p44 MAPK pathway is involved in the inhibition of RASMC proliferation by NO. Western blot analysis revealed that treatment of RASMC with NO or DFMO leads to activation of p42/p44 MAPK and induction of p21(waf1/cip1). This effect was prevented by MAPK kinase 1/2 inhibitors, suggesting that induction of p21(waf1/cip1) depended on activation of p42/p44. Moreover, activation of p42/p44 and induction of p21(waf1/cip1) were prevented by exogenous putrescine but not ornithine, suggesting this effect was due to the inhibition of ODC by NO or DFMO. Finally, activation of p42/p44 MAPK and induction of p21(waf1/cip1) were cGMP-independent. Neither 1H-(1,2,4)oxadiazolo[4,3-alpha]quinoxalin-1-one nor zaprinast influenced the cytostatic effect of NO or DFMO or their ability to activate these signal transduction pathways. These observations suggest that inhibition of ODC and accompanying putrescine production are the underlying mechanisms by which NO and DFMO activate the MAPK pathway to promote induction of p21(waf1/cip1) and consequent inhibition of cell proliferation.
منابع مشابه
p42/44 Mitogen-activated protein kinase regulated by p53 and nitric oxide in human pulmonary arterial smooth muscle cells.
Although nitric oxide (NO) is known to inhibit vascular smooth muscle cell proliferation, the subcellular molecular mechanisms involved with the inhibitory signal transduction pathways are uncertain. We investigated the effect of exogenous NO on cell proliferation and the expression of p53, p21, and phosphorylated p42/44 mitogen-activated protein kinase (MAPK) in human pulmonary arterial smooth...
متن کاملInhibition of vascular smooth muscle cell proliferation and neointimal formation in injured arteries by a novel, oral mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor.
BACKGROUND Mitogen-activated protein kinases (MAPKs) are rapidly induced after arterial injury in different animal models. However, their precise role in vascular smooth muscle cell (VSMC) proliferation and neointimal formation in vivo remains to be determined. METHODS AND RESULTS We investigated the properties of a novel, selective inhibitor of the upstream kinase, MAPK/extracellular signal-...
متن کاملOxLDL induces mitogen-activated protein kinase activation mediated via PI3-kinase/Akt in vascular smooth muscle cells.
Oxidized low-density lipoprotein (OxLDL) is a risk factor in atherosclerosis and stimulates multiple signaling pathways, including activation of phosphatidylinositol 3-kinase (PI3-K)/Akt and p42/p44 mitogen-activated protein kinase (MAPK), which are involved in mitogenesis of vascular smooth muscle cells (VSMCs). We therefore investigated the relationship between PI3-K/Akt and p42/p44 MAPK acti...
متن کاملChlamydia pneumoniae and chlamydial heat shock protein 60 stimulate proliferation of human vascular smooth muscle cells via toll-like receptor 4 and p44/p42 mitogen-activated protein kinase activation.
An early component of atherogenesis is abnormal vascular smooth muscle cell (VSMC) proliferation. The presence of Chlamydia pneumoniae in many atherosclerotic lesions raises the possibility that this organism plays a causal role in atherogenesis. In this study, C pneumoniae elementary bodies (EBs) rapidly activated p44/p42 mitogen-activated protein kinases (MAPKs) and stimulated proliferation o...
متن کاملPotentiation of nitric oxide-induced apoptosis in p53-/- vascular smooth muscle cells.
The functional role of p53 in nitric oxide (NO)-mediated vascular smooth muscle cell (VSMC) apoptosis remains unknown. In this study, VSMC from p53-/- and p53+/+ murine aortas were exposed to exogenous or endogenous sources of NO. Unexpectedly, p53-/- VSMC were much more sensitive to the proapoptotic effects of NO than were p53+/+ VSMC. Furthermore, this paradox appeared to be specific to NO, b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 22 شماره
صفحات -
تاریخ انتشار 2001